Enssib  - École Nationale Supérieure des Sciences de l'Information et des Bibliothèques

École Nationale Supérieure
des Sciences de l'Information et des Bibliothèques

Normal view MARC view ISBD view

Analyse de données en Python : manipulation de données avec pandas, NumPy et IPython / Wes McKinney ; [traduction Dominique Durand-Fleischer]

Type de document : LivresTraduction de: Python for data analysis = cop. 2012Auteur principal: McKinney, Wes, Auteur, Traducteur Auteur secondaire: Durand-Fleischer, Dominique, Traducteur Langue : français ; de l'oeuvre originale, anglais ; de la table des matières, français.Éditeur : Paris : Eyrolles, DL 2015Description : 1 vol. (XVII-488 p.) : ill., couv. ill. ; 23 cmISBN : 978-2-212-14109-2.Est une traduction de : Python for data analysis, cop. 2012Résumé: "Vous cherchez des instructions complètes pour manipuler, traiter, nettoyer et condenser des structures de données en Python ? Ce livre pratique regorge d'études de cas concrets qui proposent des solutions efficaces à toute une série de problèmes d'analyse de données à l'aide de plusieurs bibliothèques Python - comme NumPy, pandas, matplotlib et IPython. Un livre de référence pour les développeurs big data. Cet ouvrage est également une introduction efficace et moderne au calcul scientifique en Python dans les applications traitant de grandes quantités de données. Il est l'outil idéal des analystes qui découvrent Python et des programmeurs Python qui découvrent le calcul scientifique. Utilisez le shell interactif IPython comme environnement de développement principal. Apprenez les fonctions élémentaires et avancées NumPy (Numerical Python). Lancez-vous avec les outils d'analyse de données de la bibliothèque pandas. Utilisez des outils très performants pour charger, nettoyer, transformer, fusionner et reformater vos données. Créez des nuages de points et des représentations statiques ou interactives avec matplotlib. Appliquez les ressources groupby de pandas pour tailler des cubes, découper et condenser vos jeux de données. Manipulez des données de séries temporelles sous différents formats. Apprenez à résoudre des problèmes d'audience web, de sciences sociales, de finances et d'économie grâce à des exemples détaillés." [Source : 4e de couv.] • Un guide pour extraire, classer et analyser d'importants volumes de données grâce au langage Python. ©Electre 2015Sujet - Nom commun: Python (langage de programmation) | Exploration de données Voir dans le SUDOC
Item type Current location Collection Call number Status Date due Barcode Item holds
Prêt normal Enssib
Pôle Information numérique et médias
Papier 005.2 LAN pyt (Browse shelf) Available 8596105
Total holds: 0

Index

"Vous cherchez des instructions complètes pour manipuler, traiter, nettoyer et condenser des structures de données en Python ? Ce livre pratique regorge d'études de cas concrets qui proposent des solutions efficaces à toute une série de problèmes d'analyse de données à l'aide de plusieurs bibliothèques Python - comme NumPy, pandas, matplotlib et IPython. Un livre de référence pour les développeurs big data. Cet ouvrage est également une introduction efficace et moderne au calcul scientifique en Python dans les applications traitant de grandes quantités de données. Il est l'outil idéal des analystes qui découvrent Python et des programmeurs Python qui découvrent le calcul scientifique. Utilisez le shell interactif IPython comme environnement de développement principal. Apprenez les fonctions élémentaires et avancées NumPy (Numerical Python). Lancez-vous avec les outils d'analyse de données de la bibliothèque pandas. Utilisez des outils très performants pour charger, nettoyer, transformer, fusionner et reformater vos données. Créez des nuages de points et des représentations statiques ou interactives avec matplotlib. Appliquez les ressources groupby de pandas pour tailler des cubes, découper et condenser vos jeux de données. Manipulez des données de séries temporelles sous différents formats. Apprenez à résoudre des problèmes d'audience web, de sciences sociales, de finances et d'économie grâce à des exemples détaillés." [Source : 4e de couv.]

Un guide pour extraire, classer et analyser d'importants volumes de données grâce au langage Python. ©Electre 2015

1. Exemples introductifs 2. IPython : un environnement interactif de calcul et de développement 3. Les bases de NumPy : tableaux et calcul vectoriel 4. Démarrer avec pandas 5. Chargement de données, stockage et formats de fichiers 6. Manipulation des données : nettoyer, transformer, fusionner, réorganiser 7. Diagrammes et représentations graphiques 8. Agrégation des données et opérations de groupe 9. Séries temporelle 10. Applications économiques et financières 11. NumPy niveau avancé A - Les bases du langage Python

There are no comments for this item.

Log in to your account to post a comment.

Icons made by Freepik from www.flaticon.com is licensed by CC BY 3.0

La responsabilité de l'Enssib ne peut en aucune manière être engagée quant au contenu des informations figurant sur les documents hébergés sur son site et dont elle n’est pas l’auteur ou l’éditeur, à l’exclusion de ce qui est prévu par la Loi n°2004-575 du 21 juin 2004 pour la confiance dans l'économie numérique. Sa responsabilité ne peut pas davantage être engagée quant aux conséquences pouvant résulter de l'utilisation ou l'interprétation de l'ensemble des documents figurants sur son site.

Powered by Koha

//